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ABSTRACT
Pattern lock has been widely used for authentication to protect user
privacy on mobile devices (e.g., smartphones and tablets). Several
attacks have been constructed to crack the lock. However, these
approaches require the attackers to either be physically close to the
target device or be able to manipulate the network facilities (e.g.,
WiFi hotspots) used by the victims. Therefore, the effectiveness of
the attacks is significantly impacted by the environment of mobile
devices. Also, these attacks are not scalable since they cannot easily
infer unlock patterns of a large number of devices.

Motivated by an observation that fingertip motions on the screen
of a mobile device can be captured by analyzing surrounding acous-
tic signals on it, we propose PatternListener1, a novel acoustic attack
that cracks pattern lock by analyzing imperceptible acoustic signals
reflected by the fingertip. It leverages speakers and microphones
of the victim’s device to play imperceptible audio and record the
acoustic signals reflected by the fingertip. In particular, it infers
each unlock pattern by analyzing individual lines that compose
the pattern and are the trajectories of the fingertip. We propose
several algorithms to construct signal segments according to the
captured signals for each line and infer possible candidates of each
individual line according to the signal segments. Finally, we map
all line candidates into grid patterns and thereby obtain the candi-
dates of the entire unlock pattern. We implement a PatternListener
prototype by using off-the-shelf smartphones and thoroughly eval-
uate it using 130 unique patterns. The real experimental results
demonstrate that PatternListener can successfully exploit over 90%
patterns within five attempts.
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1 INTRODUCTION
Graphical information of pattern lock is particularly suitable for
human brain, while mobile users always consider the limited digit
PIN code unsafe [17]. Therefore, pattern lock has been widely used
to authenticate users on mobile devices. Users need to draw a pat-
tern on the devices within seconds before using the devices, which
enables an easy mechanism for user authentication. According to a
recent survey [33], around 40% of the participants use pattern lock
as the screen lock to protect their devices, while 33% of those who
do not use it to lock their mobile systems often use pattern lock for
identity authentication on apps, e.g., Alipay [4].

Pattern lock security has attracted intensive attention recently.
Many security mechanisms have been developed to ensure that the
screen of mobile devices cannot be captured by other applications
when users draw patterns. For example, sandbox and TrustZone
provide software and hardware isolation for sensitive information
(e.g., unlock pattern). All applications (app based or web based)
will be constrained by such mechanisms so that they cannot ac-
cess other private resources that are not assigned to them. Hence,
these mechanisms make the traditional attacks, e.g., hijacking the
unlock screen or constructing phishing attacks, difficult to infer
pattern lock. However, it is worth noting that applications on mo-
bile devices can still access certain shared hardware resources like
the accelerometer, camera, microphone, and GPS. Such resources
may open a door to infer unlock pattern by using side channel
information generated by them.

A large number of attacks [14, 18, 21, 23, 24] have been widely
developed to crack PINs by capturing the features during typing
PIN number. For instance, malware installed on a victim’s device
can identify the location of screen taps by leveraging the motion
sensors (i.e., accelerometer and gyroscope) when users type on
the soft keyboard on their devices [14, 21, 23]. These approaches
usually regard an entire unlocking process with multiple taps as a
single sample for feature extraction and rely on abundant training
with labeled data to perform machine learning based analysis. In
addition, the pressure of typing and changes of device orientation
will significantly affect the attack accuracy. Simon et al. [24] lever-
aged the microphone to detect touch events and the front camera to
estimate the smartphone’s orientation changes, and then correlated
the changes to the position of the digit tapped by the victim. How-
ever, the estimation of orientation changes is impacted by ambient
lighting and camera shake. Li et al. [18] considered that an attacker
controls a public WiFi access point and inferred the keystrokes on
the smartphone through WiFi CSI data, but WiFi signals are prone
to be disrupted by nearby moving objects. These approaches cannot
be applied to infer pattern lock. Actually, it is more difficult to crack
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pattern lock since moving a fingertip on the screen during the pat-
tern unlock process introduces much less disturbance to the mobile
device than tapping numbers. Therefore, it is more challenging to
infer the unlock pattern by leveraging the side channel information
above.

Recently, several attacks [11, 33, 35] have been constructed to
crack pattern lock on Android. The Smudge attack [11] leveraged
oily residues left on the screen to infer the unlock pattern. However,
the accuracy of inferring lock is highly impacted by the residues
on the screen, which can be interfered by subsequent operations of
users. Zhang et al. [35] demonstrated the feasibility of inferring the
pattern by analyzing wireless signals. Unfortunately, the proposed
approach requires complicated network setup, and the effectiveness
of the attack is easily interfered by moving objects, e.g., the people
nearby. Ye et al. [33] cracked Android pattern lock by using video
footage that records the victim’s fingertip motions. It requires the
attacker to be physically close enough to the device. Moreover,
the attack accuracy is impacted by many physical factors, such as
filming angle and distance, changes of light, and camera shake. In
particular, these attacks cannot be used to infer unlock patterns of
a large number of devices. In a nutshell, these existing attacks are
not robust and scalable.

In this paper, we propose a novel acoustic attack, called Pattern-
Listener, to infer the sensitive unlock pattern by using imperceptible
acoustic signals. The observation behind the attack is that the fin-
gertip on the screen of a mobile device will reflect nearby acoustic
signals, and the reflected signals embed the information of finger-
tip motions corresponding to the unlock pattern. When a victim
starts to draw his pattern, PatternListener generates imperceptible
audio and uses the speakers of the victim’s device to play it, mean-
while, the microphones of the victim’s device record the acoustic
signals reflected by the fingertip. The recorded acoustic signals
will be processed by a remote server to infer the fingertip patterns.
PatternListerner constructs different lines according to the trajec-
tories of the fingertip and infers each lock pattern by analyzing
individual lines that compose the pattern. Note that, 2D gesture
tracking [22, 32, 34] cannot be applied in PatternListener since they
need simultaneously use two speaker-microphone pairs to track
gestures, which requires re-configuring the smartphone systems
and is not possible in our attack.

In particular, we utilize coherent detection together with static
components removal to effectively eliminate noises in the signals,
and identify turning points of fingertip motions to accurately seg-
ment the acoustic signals into fragments associated with each line
in the pattern. We extract the movement features based on the
changing trend of the path length of acoustic signals reflected by
the moving fingertip so that we can infer the possible candidates of
each line. We combine the candidates of different lines together to
identify the most possible candidates for the unlock pattern. Note
that, acoustic signals attenuate quickly as the distance increases,
and thereby other irrelevant moving objects around, e.g., the vic-
tim’s head, cannot interfere with the recorded acoustic signals,
which means that PatternListener is robust to the interference from
the environment. Particularly, by collecting signals from various
phone models, PatttenListener can easily infer unlock patterns of a
large number of phone devices simultaneously.

The main contributions are summarized as follows:
• We uncover a new vulnerability of pattern lock by leveraging

speakers and microphones of mobile devices. To the best of
our knowledge, this is the first work to leverage speakers and
microphones to reconstruct the victim’s unlock pattern, which
raises a serious issue that all shared hardware on phones can be
leveraged to crack the security mechanisms.

• We propose PatternListener, a novel attack to crack Android
pattern lock by leveraging imperceptible acoustic signals. It is
a more robust and practical attack since it neither requires an
attacker to be physically close to the victims nor is sensitive to
the interference from the environment.

• We develop several algorithms in PatternListener to infer lock
patterns by analyzing acoustic signals reflected by the fingertip.
Particularly, we recover each line constituting the pattern that is
the trajectory of the fingertip drawing on the phone according
to the signals. Therefore, PatternListener is scalable to analyze
a large number of unlock patterns.

• We implement a PatternListener prototype using off-the-shelf
smartphones. The extensive experimental results demonstrate
that an attacker can successfully crack over 90% of 130 patterns
within five attempts. In particular, a complicated pattern with
more lines cannot provide stronger protection for users under
the attack of PatternListener. Moreover, PatternListener is robust
to the changes of drawing speed and gestures, and different size
of screens. It will not be significantly affected by surrounding
objects and the ambient noise.

2 CRACKING PATTERN LOCK
2.1 Android Pattern lock
Pattern lock is a typical lock policies to protect the sensitive in-
formation on users’ devices. It authenticates users by asking them
to draw a pattern on a given 3 × 3 grid, which is enabled in most
mobile systems. Angeli et al. [17] report that the human brain is
particularly well-suited to remember such graphical information.
There are increasing numbers of apps and OS providing pattern
lock for their users as a protection option. In particular, pattern
lock is widely applied in the Android ecosystem. A survey [10]
shows that among participants using Android devices, 257 of 354
(72%) users used graphical passwords, and 249 of 257 (97%) users
think pattern lock safe enough. Therefore, it is essential to study
the security of the pattern lock mechanism.

2.2 Threat Model
In this paper, we study the vulnerability of pattern lock on Android
by developing a novel attack called PatternListener. PatternListener
aims to reconstruct unlock patterns of OS or apps on a victim’s
mobile device. It generates and plays imperceptible audio, mean-
while, themicrophones of the victim’s device record acoustic signals
reflected by the fingertip, such that an attacker can analyze the
recorded signals and reconstruct the pattern according to the finger-
tip motions. To ensure the feasibility of the attack, we will develop a
malware that can be installed on mobile devices so that an attacker
can compromise many devices simultaneously and obtain the lock
patterns. Note that, the malware runs in the background after being
installed, which is similar to traditional malware [37]. In order to
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Figure 1: Attack flow of PatternListener.

launch the attack, PatternListener requires the permission to access
speaker, microphone, and motion sensors (i.e., accelerometer and
gyroscope) as well as network access permission. Most permissions
can be granted without user approval, except the permission of
accessing the microphone. However, we observe that the permis-
sion of accessing microphone is very popular in Android apps. For
instance, microphone permissions are required by 55% social apps
and 52% communication apps in the Google Play marketplace. The
details can be found in the appendix. Therefore, it is easy for Pat-
ternListener to obtain the permission after it is disguised as an app
in these categories.

Note that, PatttenListener can crack pattern locks of various
phone devices with different types of patterns simultaneously. The
cracked patterns can be exploited in different ways. For example,
PatttenListener can assign each cracked phone a unique serial num-
ber and then frequently broadcast the serial number through hidden
acoustic signals [36]. The attacker can use a smartphone to detect
and decode the hidden acoustic signals, and then understands which
phones nearby have been cracked. Thus, the corresponding unlock
pattern can be used to compromise the target device after the at-
tacker has a chance to physically access the device for a short period
of time.

2.3 Overview of PatternListener
Figure 1 shows the flow of the attack constructed by PatternLis-
tener, which mainly consists of four phases: Unlock Detection, Audio
Capturing, Pre-processing, and Pattern Reconstruction.
Unlock Detection: This phase aims to detect when the victim is
going to draw the unlock pattern. Thus PatternListener can imme-
diately play audio and record the reflected acoustic signals, and
then captures the fingertip motions on the screen. In this paper, we
consider two different unlock scenarios, i.e., screen unlock and app
unlock.
Audio Capturing: This phase records acoustic signals to capture
the fingertip motions on the screen during the unlock process. Once
the unlock action is detected, PatternListener uses the speakers of
the victim’s device to play the generated imperceptible acoustic
signals, and triggers the microphones to record the acoustic signals

reflected by the fingertip. The reflected acoustic signals correspond-
ing to the unlock process will be identified and uploaded to the
server.
Pre-processing: This phase extracts the sound signals correspond-
ing to fingertip motions. In order to achieve this, PatternListener
leverages the coherent detector to demodulate the baseband signals,
and downsamples the signals to enable efficient signal processing.
Then, it removes the static components to obtain the true acoustic
signals reflected by the fingertip.
Pattern Reconstruction: This phase finally reconstructs the vic-
tim’s unlock pattern by analyzing the signals. PatternListener ana-
lyzes the signals to obtain the trajectories of the fingertip drawing
on the screen and recover the lines according to the trajectories.
Since the pattern is composed of the lines, we can infer the can-
didate pattern by mapping the lines into grid patterns. It includes
four steps: the Signal Segmentation step segments the acoustic sig-
nals into fragments, the Relative Movement Measurement step infers
the movement of the fingertip, the Pattern Line Inference step con-
structs lines representing the trajectories of the fingertip, and the
Candidate Patterns Generation step generates the candidate patterns
according to the inferred lines.

3 PATTERNLISTENER DESIGN
This section presents the detailed design of PatternListerner.

3.1 Unlocking Detection
Unlock detection aims to detect when the victim is going to draw
the pattern so that PatternListener can immediately play audio and
then record acoustic signals to capture the fingertip motions on the
screen. We detect screen unlock and app unlock as follows.
Screen Unlock: The screen of a device with pattern lock usually
experiences the following three states when the victim is going to
unlock the screen: (1) non-interactive. the device is in sleep mode
and the user cannot interact with the device through the screen;
(2) pre-interactive. the screen is open and the user is waking up
the device; (3) interactive. the device is totally activated, and the
user can interact with the device through the screen. In the An-
droid system, the information of screen state will be automatically
broadcasted when the state changes. Therefore, we can detect the
action of screen unlock by monitoring the broadcasted informa-
tion associated with the state transition from non-interactive to
pre-interactive.
App Unlock: App unlock is different from screen unlock because
it does not generate any broadcast information. In order to detect
when a victim is going to draw the app unlock pattern, we develop
a simple and effective scheme based on the following observation.
The victim often have left or right swipes on the screen to find the
app and click to select an app, and the fingertip motions often pause
for a few seconds before the unlock because of the delay of app
startup. These consecutive on-screen operations typically expose
some spatial-temporal motion characteristics, which can be utilized
to detect the action of app unlock. We leverage motion sensors
to detect the click action on the screen. After the screen has been
unlocked, we utilize the speaker to continuously play imperceptible
audio. We can identify the swipe actions from the recorded acoustic
signals since the moving fingertip will reflect the acoustic signals.
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Figure 2: An example of recorded acoustic signals. A finger-
tip moves on the screen of a smartphone during ∆t .

It is worth noting that the detection of swipe action is much easier
than inferring the victim’s unlock pattern by using acoustic signals
because it does not need to accurately know the distance and angle
of fingertip movements.

Note that, PatternListener does not need to capture the pattern
unlock every time when the user draws the pattern. The pattern
lock can be captured and cracked as long as we correctly detect
the unlock action once. In fact, screen unlock action is very easy
to be detected by the above method because the victim tends to
unlock the smartphone very frequently everyday. In this paper, for
simplicity, we develop a simple unlock detection scheme, which is
effective in detecting most app unlock behaviors. Actually, we can
possibly incorporate other suitable unlock detection mechanisms
into PatternListener to improve the detection efficiency. For exam-
ple, users may raise their smartphones before screen unlock (e.g.,
iOS 10 can detect raise action to wake up iPhone [1]) in most cases.
Hence, we can leverage the motion sensor to detect the raise action
of a smartphone and use the action as a signal to detect that the
victim is going to unlock the screen.

3.2 Audio Capturing
Once the unlock action is detected, PatternListener uses the speak-
ers of the victim’s device to play the generated imperceptible acous-
tic signals, and triggers the microphones to record the acoustic
signals reflected by the fingertip moving on the screen of a mobile
device. The reason why we leverage acoustic signals to reconstruct
the unlock pattern is that the fingertip motions can be extracted by
analyzing the reflected acoustic signals.
Audio Play with the Speaker: The generated audio is a continu-
ous wave acoustic signal of A sin 2π f t , where A is the amplitude
and f is the frequency of acoustic signals. The frequency f is set
to be in the range of 18 ∼ 20 kHz. The reason that we choose this
frequency range is that the response frequency of most speakers
and microphones is from 50 Hz to 20 kHz and most people cannot
hear the sound with a frequency higher than 18 kHz [31]. Note
that, some users may hear sound with a frequency higher than 18
kHz. However, we can lower the volume to make it almost imper-
ceptible to them. Thereby, the generated audio can be recorded
by the microphone but cannot be noticed by any users. Moreover,
we observe that ambient noise becomes negligible at frequencies
higher than 18 kHz makes PatternListener undisturbed by ambient
noise.

LPF

LPF

downsample

downsample

cos 2 π ft

sin 2 π ft

C

O

Recorded  audio

Baseband signal

Figure 3: The process of coherent detection.

Audio Record with the Microphone: The microphone records
the acoustic signals once the speaker plays the audio. The recorded
acoustic signals capture the information of fingertip motions be-
cause the sliding fingertip on the screen of mobile devices reflects
the played acoustic signals. Figure 2 shows an example of recorded
acoustic signals when the fingertip moves on the screen of a smart-
phone during ∆t . We can observe that fingertip motions on the
screen will lead to a significant interference to the acoustic signals
(see the ellipse area shown in Figure 2).
Valid Signal Identification: We are only interested in the acoustic
signals corresponding to the unlock process. The unlock process
starts when the fingertip touches the screen and terminates when
the fingertip leaves the screen. The motion sensors can be used to
detect the two key timepoints and estimate the startpoint of the
pattern. The motion sensors data would change significantly when
the fingertip clicks on the screen [21]. When the victim touches the
screen, the finger gives a downward pressure to the phone, and the
phone will rotate on the X-axis and Y-axis and move down on the
Z-axis due to the pressure. When the fingertip leaves the screen,
the pressure will disappear and the phone tends to return to its
original location. That is, it will rotate on the X-axis and Y-axis
and move up on the Z-axis. Such movements of the phone can be
captured by motion sensors and thus we can obtain the timepoints
when the fingertip touches and leaves the screen by monitoring
the changes of the data generated by the motion sensors. Then, the
acoustic signals within the two key timepoints can be captured so
that an attacker can upload the signals to a server stealthily and
analyze such signals to recover the unlock pattern.

3.3 Audio Preprocessing
Before reconstructing the unlock pattern, PatternListener prepro-
cesses the recorded audio to extract the sound signal component
related to fingertip motions. PatternListener first leverages the tra-
ditional coherent detection [28] to demodulate the baseband signals
and downsamples the signals, and then removes the static compo-
nents to obtain the true acoustic signals reflected by the fingertip.
Coherent Detection: The played audio from the speaker can be
treated as the carrier signal, and the signal related to fingertip mo-
tions can be treated as the baseband signal. Thus, the recorded
acoustic signals are the combination of the carrier signal and the
baseband signal. The recorded acoustic signals are synchronized
with the played acoustic signals, thus we can utilize the traditional
coherent detector to demodulate the baseband signal from the
recorded signals. The process of coherent detection is shown in Fig-
ure 3. Let R(t) denote the recorded acoustic signals, Flp denote a low
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Figure 4: A fingertip draws a unlock pattern of “Z” during
∆t . The red points in (a) are turning points, where the C/O
waveform become relatively flat in (b).

pass filter, and Fds denote a downsampled function. Then the cor-
responding C (cophase) component and O (orthogonal) component
are calculated as follows:

C(t) = Fds (Flp (R(t) ∗A sin 2π f t))
O(t) = Fds (Flp (R(t) ∗A cos 2π f t)). (1)

Figure 4(b) shows the C/O component corresponding to the un-
lock pattern in Figure 4(a). The C and O components of the baseband
signal have the same amplitude and frequency but different phases.
Because we use continuous wave acoustic signal with constant
amplitude, the C/O waveform without fingertip motions is a flat
line. When the fingertip moves on the screen, the C/O waveform
will fluctuate (e.g., the waveform within ∆t in Figure 4(b) ).
Static Components Removal: The recorded acoustic signals are
the combination of the true acoustic signals reflected by fingertip
with the noisy acoustic signals. Most of the acoustic noise signals,
which travel through the line of sight (LOS) path or are reflected
by the surrounding objects, are the static components. Therefore,
we can remove the static components to obtain the true C/O com-
ponents corresponding to the real signals reflected by the sliding
fingertip. To address this issue, we leverage the Local Extreme
Value Detection (LEVD) [32] algorithm to estimate the static com-
ponents. We obtain the value of the static acoustic signal at the
midpoint by computing the average value of two nearby maximum
and minimum values, and leverage a linear interpolation algorithm
to estimate the values of static acoustic signals on other points
during fingertip movement.

Given the C/O waveform, once we find a local extreme point, we
can compare it with the last extreme point. If their time interval is
larger than an interval threshold Ti , it will be considered as a valid
extreme point. Also, the local extreme point will be considered as
an valid extreme point only if their difference in amplitude is larger
than the difference threshold Td . The interval threshold Ti is twice
of the average time interval of two adjacent extreme points, which
will be updated as more valid extreme points are identified. The
difference threshold Td is an empirical value that helps us to filter
out local extreme points incurred by noises.

3.4 Signal Segmentation
In order to reconstruct the unlock pattern, we first need to identify
each line that is formed by the trajectory of the fingertip drawing on

TaTa

Figure 5: An example of turning points identification. The
red points are valid extreme points. Ta is the average time
interval between two adjacent extreme points.

the screen. The signal segmentation phase is designed to segment
the C/O component into fragments corresponding to each line of the
pattern so that each line can be further identified. Note that, we can
segment the signal manually or automatically. In PatternListener,
we develop a Turning Points Identification (TPI) algorithm to realize
automatic signal segmentation. Thereby, it automatically infers
unlock patterns of a large number of devices simultaneously if the
malware can collect signals from these users.

During the unlocking process, a new line starts when the finger-
tip makes a turn. For example, as shown in Figure 4(a), the fingertip
turns twice for the unlock pattern of “Z” which consists of three
separate lines. The point where the fingertip makes a turn is called
a “turning point” (e.g., the two red points in Figure 4(a)). Thus, if
we know the time of each turning point, we can segment the C/O
component into fragments corresponding to each line.

Now we need to identify the turning points of fingertip mo-
tions. We observe that the fingertip pauses for a while (though
the duration is very short) when arriving at a turning point. As
a consequence, the acoustic signal reflected by the fingertip will
be relatively stable when the fingertip is at a turning point. That
is, the C/O waveform fluctuates quickly when the fingertip moves
normally and slowly at the turning points, as shown in Figure 4(b).
Therefore, if we found that the time interval between two adjacent
extreme points is much larger than the average time interval, this
point is a turning point. Based on this observation, we propose a
Turning Points Identification (TPI) algorithm to identify all the valid
extreme points and further find the true turning points. Figure 5
shows an example of turning points identification.

Note that, we have leveraged the LEVD algorithm to operate
on the C and O component separately to find local extreme points
(Section 3.3). However, some sharp noises which are introduced by
environmental disturbance or hardware deficiency in C/O compo-
nent may be identified as extreme points by the LEVD algorithm
mistakenly. Considering that valid extreme points in C component
are interlaced in time with that in O component, we further sort
the obtained extreme points of C/O component together according
to time, exclude some misidentified extreme points to make the
extreme points of C and O interlaced. Finally, we can sequentially
examine the time interval between two adjacent extreme points of
C component to find all turning points.

5



Algorithm 1: TPI algorithm
Input: C(t ) and O (t )
Output: turning points {T P }

1 /*Call the LEVD algorithm to operate on C/O component separately
to get local extreme points*/

2 {LEC } ← LEVD(C(t ));
3 {LEO } ← LEVD(O (t ));
4 /*Exclude some misidentified extreme points to make the extreme

points of C and O interlaced in time*/
5 {LECO } ← T imeSor t ({LEC }, {LEO });
6 ({EC }, {EO }) ← Alternate({LECO });
7 n ← Num({EC });
8 /*Calculate the average interval of the extreme points of C*/
9 Inave ← AveInter ({EC });

10 /*Sequentially examine the time interval between two adjacent
extreme points of C to find all turning points*/

11 for i = 2 to n do
12 Ini ← Interval (ECi );
13 if Ini >> Inave then
14 {T P } ← ECi ;
15 end
16 end
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Figure 6: The C/O component corresponds to the one re-
flected by the moving fingertip.

3.5 Relative Movement Measurement
After the signal fragments corresponding to each line are accurately
segmented, we identify and re-evaluate startpoints and endpoints
of the C/O components and then measure the relative movement
of the fingertip associated with each line.
Startpoint and Endpoint Re-identification: Figure 6 shows the
C/O component corresponding to a pattern line after removing
noises. The C/O waveform approximates a sinusoid and the C/O
trace is similar to a circle whose center is (0, 0). However, the iden-
tification of the C/O component’s startpoint and endpoint is not
very accurate due to the error of signal segmentation. An example
of identification error is shown in the area of the ellipse in Figure
6(a). Now we will describe how to accurately calculate the phase
changes of acoustic signals due to fingertip movement for each line
and reduce the identification error.

The basic idea is to calculate the accumulated rotating degrees
of all points in C/O trace. The points in C/O trace are denoted as P1,
P2, ..., Pi , ..., Pn , where i is the time index. The rotating degree of the
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Figure 7: The URDs in C/O trace. The two red points corre-
spond to the more accurate startpoint and endpoint of C/O
trace.

arc ŐP1P2 can be approximatively calculated as the angle between
line P1P2 and line P2P3. We use URD to denote the rotating degree
of adjacent two points. Similarly, we can obtain the rotating degree
of arc ŐP2P3, ..., ŔPn−2Pn−1. Finally, the phase change of a fragment
of acoustic signals is equal to the sum of all URD in its C/O trace.
Figure 7 shows the URDs in a C/O trace. We can see that the values
of most URDs in this C/O trace are about 0.6◦, but some URDs at the
beginning and ending period have unstable values. In fact, the value
of URD is proportional to the sliding speed of the fingertip. Since
the sliding speed of the fingertip is relative stable, the points in the
C/O trace whose URDs vary greatly and deviate from normal values
are invalid. According to this observation, we can find the more
accurate startpoint and endpoint for the C/O trace (e.g., the two
red points in Figure 6(b)) and further calculate the phase changes
more accurately.
Relative Movement of the Fingertip: In PatternListener, we
leverage the phase-based approach [32] to measure the relative
movement of the fingertip by calculating changes of the phases
of the acoustic signals reflected by the fingertip, and then convert
the changes of the phase into the changes of path lengths. Note
that, the fingertip movement will affect both the frequency and the
phase of reflected signals. Here, the frequency is influenced by the
movement speed, while the phase is impacted by the movement dis-
tance and direction. The movement distance and direction for the
same pattern will not change, while the movement speed may vary.
Therefore, we use the phase-based approach rather than Doppler
shift-based approach [15] that extracted movement features corre-
sponding to the frequency changes and is significantly impacted
by the movement speed.

Letd(t) denote the path length of acoustic signals reflected by the
moving fingertip at time t , ϕ(t) denote the phase of acoustic signals
reflected by the fingertip at time t , and λ denote the wavelength
of acoustic signals. Then the path length change during the time
period (t1, t2) can be calculated as follows:

d(t2) − d(t1) =
−λ
2π (ϕ(t2) − ϕ(t1)). (2)

According to Equation 2, we can obtain the path length change dur-
ing any time period, which is determined by the relative movement
of the fingertip. Given that the speed of sound ν in the air is 340m/s
and frequency of acoustic signal f is 19 kHz, we can obtain the
wavelength λ = ν/f is 1.79 cm. Therefore, the phase based distance
measurement approach is enough to distinguish different fingertip
movements on the pattern grid.
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Figure 8: The speaker andmicrophone are on different sides
of the trajectory of the fingertip.

3.6 Pattern Line Inference
Now we use the path length changes to infer each line constituting
the unlock pattern. We first characterize the movement feature re-
lated to the sliding fingertip and then infer the line with a similarity
measurement.

3.6.1 Movement Feature Extraction. In fact, the relationship be-
tween the changes of the path lengths and relative movement of the
fingertip is decided by the positions of the speaker and the micro-
phone. Without loss of generality, we consider two situations: the
speaker and the microphone are at different sides of the trajectory
of the fingertip, and the speaker and the microphone are at the
same side of the trajectory. It is worth noting that the trajectory of
the fingertip is a line because we have segmented the sound signal
into fragments corresponding to each line.
Different Sides: The path length changes of acoustic signals re-
flected by the sliding fingertip are shown in Figure 8. A trajectory
of the fingertip is a line between the speaker and the microphone
with an arbitrary length and direction. We assume that the finger-
tip slides from L to N and passes M , where M is the intersection
between the trajectory and the line from the speaker to the mi-
crophone. As we know, the path length of the acoustic signal will
decrease from L toM and then increase fromM toN . In other words,
the path length changes only have three cases: always increasing,
always decreasing, and increasing after decreasing. Therefore, we
can use a two-dimensional vector (d1,d2) as the fingertip move-
ment feature, where d1 is the path length changes from L toM , and
d2 is the path length changes fromM to N .
The Same Side: The path length changes of acoustic signals re-
flected by the moving fingertip are shown in Figure 9. We cannot
directly observe how the path length of acoustic signal changes
from L to N . To solve the problem, we assume there exists a vir-
tual speaker Speaker ′, which is the mirrored speaker along the
trajectory. Thus, the path length of acoustic signals between the
speaker and the moving fingertip is always the same as that be-
tween Speaker ′ and the moving fingertip. That is, the path length
changes from the speaker reflected by the moving fingertip to the
microphone are always the same as that from Speaker ′ reflected
by the moving fingertip to the microphone. Therefore, the path
length change in this case is similar to that the speaker and the
microphone are at different sides of the trajectory of the fingertip.
Hence, we can still use a two-dimensional vector (d1,d2) as the
fingertip movement feature.

L
M

N
Moving trajectory

d2 dmin d1

Speaker

Speaker‘

Mic

Figure 9: The speaker and microphone are on the same side
of the trajectory of the fingertip.

There are more than one speaker and microphone in most com-
mercial off-the-shelf mobile devices. PatternListener requires at
least one pair of speaker and microphone to infer the unlock pat-
tern. The attack effectiveness will be better if more speakers and
microphones are used. The fingertip feature varies with different
pairs of speaker and microphone because the changes of the path
length are directly impacted by the positions of the speaker and
the microphone. Therefore, we can combine the two-dimensional
feature vectors of different pairs of speaker and microphone to
infer each line more accurately. To prevent the interference among
acoustic signals generated from different speakers, signals gener-
ated from different speakers can use different frequencies.

3.6.2 Similarity based Line Inference. We build a ground-truth
database of feature vectors for each line with different pairs of
speaker and microphone. Given a start point, the fingertip may
slide to other 8 points in the 3 × 3 grid to make up 8 different lines.
We compare the feature vector with that of 8 different lines and
calculate the corresponding similarity. Let (d1i j ,d2i j ) denote the
feature vector of the ith (i ∈ [1, 8]) line with the jth pair of speaker
and microphone, (d1′j ,d2

′
j ) denote the extracted feature vector with

the jth pair of speaker and microphone. The similarity Si j between
the extracted feature vector and that of the ith line with the jth
pair of speaker and microphone is calculated as follows:

Si j = 1 −

√
(d1i j − d1′j )2 + (d2i j − d2

′
j )2√

(d1i j )2 + (d2i j )2 +
√
(d1′j )2 + (d2

′
j )2
. (3)

Then, we combine the feature vectors with different pairs of
speaker and microphone to obtain the similarity Si between ex-
tracted feature vectors and that of the ith line:

Si =
n∑
j=1

WjSi j , W1 +W2 + ... +Wn = 1, (4)

where n is the total number of pairs of speaker and microphone,Wj
is the weight coefficient of the jth pair of speaker and microphone.
We set different weight coefficients for different pairs of speaker
and microphone since the relative movement measurement result
is usually more reliable when the place of the pair of speaker and
microphone is closer to the sliding fingertip. When the similarity
Si is larger than a threshold Ts (Here, we empirically set Ts = 0.65
according to our measurement results), we will treat the ith line
with the start point as a candidate line. Note that, there may exist
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Figure 10: The process of generating candidate patterns. The
red number in (b) is the corresponding similarity.

multiple candidates for the current line. We need to enumerate all
these candidates.

3.7 Candidate Patterns Generation
We map all candidates for the line into the pattern grid to generate
the pattern after the pattern line is identified. We propose a pattern
tree to conduct the pattern reconstruction and filter out impossible
candidates according to the fact that the lines of the pattern are
sequentially connected. At last, the top-5 patterns with the highest
similarities are selected as the candidates for the unlock pattern.

Figure 10(a) shows a 3× 3 grid and we name the dots from 1 to 9.
With the candidates for each line, we use the multiway tree to build
a pattern tree (as shown in Figure 10(b)) to generate candidates
for the unlock pattern. The root of the tree is the start point of
the pattern. If multiple start points are inferred for the pattern, we
generate multiple pattern trees correspondingly so that we can
estimate the start point when the fingertip starts clicking on the
screen according to the data generated by the motion sensors. For
a pattern tree, we will add the candidates of the first line at the first
layer, the candidates of the second line at the second layer, and so
on until the candidates of the last line are added into the tree. The
weight of each edge indicates the corresponding similarity of the
candidate. For example, the candidates for the line 1→ 3 are 1→ 3
and 1→ 6, so they are added at the first layer and their similarities
are added as the weights.

We can conclude that each path from the root to a leaf at the last
layer is a candidate pattern. As shown in Figure 10(b), 1 → 3 →
5→ 8, 1→ 3→ 5→ 7, and 1→ 3→ 6→ 9 are the candidates
of the unlock pattern. Note that some branches of the tree do not
reach the last layer (e.g., 1→ 6→ 8), which is because no suitable
candidate can be found after the previous line. The similarity of
a candidate pattern can be defined as the average similarity of all
lines on the path. The higher the average similarity on the path is,
the more likely it is that the path corresponds to the actual unlock
pattern. We calculate the similarities of all paths for all pattern trees
and rank them from high to low. The top five paths/patterns with
the highest similarities will be considered as the candidates for the
unlock pattern.

4 SYSTEM EVALUATION
In this section, we present our experimental results based on our
PatternListern prototype installed on off-the-shelf smartphones.

(a) Example patterns with 2 lines

(b) Example patterns with 3 lines

(c) Example patterns with 4 lines

(d) Example patterns with 5 lines

Figure 11: Example patterns with different number of lines.

4.1 Experimental Setup
4.1.1 Experiment Setup. We implement a PatternListener app

and install it on off-the-shelf smartphones. As we discussed in Sec-
tion 2, PatternListener can be disguised as a benign APP and run
in the background once it is installed. We evaluate PatternListener
on two different smartphone platforms: SAMSUNG C9 Pro and
HUAWEI P9 Plus. The server is a PC with 2.9 GHz CPU and 8 GB
memory. Note that there are more than one speaker and micro-
phone inmost mobile devices. However, most smartphones have the
issue of hardware echo cancellation when under dual track record-
ing, which will affect the feature extraction from different pairs of
speaker-microphone. Therefore, we only use one microphone to
record the acoustic signals reflected by the fingertip.

4.1.2 Ground-truth Construction. In PatternListener, the finger-
tip movement features are impacted by the relative positions of
the speaker and the microphone. Since the relative positions of
speakers and microphones are usually identical in the same smart-
phone model but may differ in different smartphone models, we
only need to generate the ground-truth database of the features
according to each smartphone model rather than each smartphone
device. In addition, in order to construct the ground-truth database,
we only need to extract the features of all lines rather than the
features of all patterns. The total number of all possible lines in
a 3 × 3 pattern grid is only 72 (= 9 × 8), while that of all possible
patterns is 389, 112 [29]. Therefore, it is not difficult to build the
ground-truth database to validate PatternListener.

4.1.3 Data Collection. In order to collect the data of various
patterns, we generated 500 anonymous questionnaires for volun-
teers who are using or have used the pattern lock and collected 197
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Figure 12: Overall cracking rate. Figure 13: Impact of pattern complexity. Figure 14: Impact of gesture.

(a) Gesture 1 (b) Gesture 2 (c) Gesture 3

Figure 15: Different unlock gestures.

unique patterns. To evaluate the influence of various patterns on the
accuracy of PatternListener, we selected 120 typical patterns, i.e.,
30 patterns with 2 lines, 30 patterns with 3 lines, 30 patterns with 4
lines, and 30 patterns with 5 lines. Figure 11 shows the example pat-
terns with different numbers of lines we used in experiments. We
found that a large number of people (about 38%) start the pattern
from the top left-most point of the pattern grid. Besides, we add
another 10 patterns with familiar alphanumeric characters, since a
recent report showed that people tend to set these patterns as the
unlock pattern owing to their preference to familiar pictures [20].

4.1.4 Default Setting. We recruited 5 volunteers, i.e., threemales
and two females, to reproduce the 130 collected patterns indepen-
dent of their own unlock patterns on the Android 3 × 3 default
pattern grid of two target smartphones: a SAMSUNG C9 Pro run-
ning Android 6.0.1 and a HUAWEI P9 Plus running Android 7.0.
The generated acoustic signals are at the range of 18 ∼ 20 kHz
with multiple frequencies since the measurements obtained from
different frequencies can be combined to improve accuracy, and
the sampling rate of the microphone is 48 KHz. Note that, the key
difference of drawing patterns among different individuals is the
drawing speed. Actually, the difference of success rates between
various drawing speeds is below 10% (see Figure 16). Thus, the ex-
periment results with more people are similar. The Android system
allows at most 20 consecutive failed unlock attempts, and the device
will be temporally locked for 30 seconds after five failed attempts.
Thus, we evaluate the success rate for inferring patterns within five
attempts. In most of our experiments, we used SAMSUNG C9 Pro
as the evaluation platform and drawn the unlock patterns with a
moderate speed (i.e., the usual drawing speed of each participant)
when the smartphone is horizontally held with a hand (i.e., Gesture
1 shown in Figure 15) in an office.

4.2 Experimental Results
4.2.1 Overall Success Rate. We first present the overall success

rate of cracking patterns with different numbers of samples of
the 130 collected patterns. It is feasible to infer the same unlock
pattern with multiple samples since PatternListener can run in
the background for a long time and capture various samples of
the same pattern, which help to improve the success rate. Here,
a sample means a piece of acoustic signal corresponding to one
unlock process. Figure 12 shows the overall success rate with one
to five attempts. First of all, PatternListener achieves an average
success rate of 58.1% with only 1 sample at the first attempt. The
success rate will increase to 94.8% with five attempt, which is a
very exciting result. Since the Android system allows up to five
failed attempts before temporally locking the device, we can con-
clude that PatternListener can successfully crack most pattern locks
in practice. In addition, the success rate will increase with more
samples since the influence of noisy samples will be eliminated.
Specifically, the success rate of five attempts reaches 99.7% with 7
samples. Therefore, PatternListener is very effective and accurate
at reconstructing unlock patterns.

4.2.2 Impact of Pattern Complexity. This experiment evaluates
the influence of pattern complexity to PatternListener, which aims
to validate if more lines included in a pattern can provide stronger
security. Note that, we define the complexity of a pattern by the
number of lines instead of the existing metrics [26], which is de-
cided by the number of points and intersections. The reason is that
PatternListener considers a combination of several individual lines
that are sequentially connected as a pattern. Figure 13 demonstrates
the success rate with only 1 sample under different pattern complex-
ities. We can observe that the cracking success rate becomes higher
for more complicated patterns, which is an interesting finding that
contradicts people’s intuition. The reason is that the patterns with
more lines also contain more fingertip movement features. It also
validates the effectiveness of the proposed pattern tree that can
remove more irrelevant candidates if more lines are set within a
pattern. Therefore, the complicated pattern with more lines cannot
provide stronger protection if under the attack of PatternListener.

4.2.3 Impact of Gesture. We then investigate the influence of
gesture on the accuracy of pattern cracking. Since people have their
own habits to hold and unlock their phones, as shown in Figure 15,
we should ensure that PatternListener can infer the unlock pattern
accurately under various holding gestures: (i) in gesture 1, the
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Figure 16: Impact of speed. Figure 17: Impact of surrounding ob-
jects.

Figure 18: Impact of smartphonemodels
and noise.

victim holds the phone with one hand horizontally and draws the
pattern with another hand, (ii) in gesture 2, the victim holds the
phone with one hand vertically and draws the pattern with another
hand, (iii) in gesture 3, the victim holds and unlocks the phone
with the same hand (i.e., holding the phone with the right hand and
drawing a pattern with the thumb).

Figure 14 demonstrates the success rate with 1 sample under
different gestures. We can observe that PatternListener achieves
the best accuracy (average success rate is 94.8% in five attempts)
for gesture 1, while the worst (average success rate is 73.2% in five
attempts) for gesture 3. The reason is that the ground-truth database
is only constructed with gesture 1. There is more movement noise
generated by the one-handed operation in gesture 3. However,
according to Figure 12, we can know that the success rate in the
worst situation can be increased by capturing more samples. Note
that the accuracy with gesture 2 is not significantly lower than
that with gesture 1, which means that PatternListener is robust
to the change of device orientation. Hence, we can conclude that
PatternListener is relatively robust under different holding gestures.

4.2.4 Impact of Drawing Speed. We further study the impact of
drawing speed on the success rate of PatternListener. Even though
people usually draw the pattern at amoderate speed to avoidmistak-
enly connecting the wrong dots, the preferred speed of individual
still varies. Hence it is worth figuring out the range of drawing
speed that PatternListener can support so as to guarantee that it
can stay robust to the changes of drawing speed. To collect the
data with different drawing speeds, we ask the participants to draw
patterns with different speeds, i.e., moving the fingertip moderately,
quickly, or slowly.

Figure 16 demonstrates the success rate with 1 sample under
different drawing speeds. We discover that a speed that is too fast
or too slow can exert a slight negative influence on the pattern
inference. Patterns with a moderate speed have the highest average
success rate. For the patterns that are drawn too fast, the audio
signal segmentation is not very accurate. While for the patterns
that are drawn slowly, the prolonged recording process introduces
accumulated errors to our algorithm. However, the difference un-
der different speeds decreases with more attempts. In addition, the
speed of drawing patterns in practice will not vary as extremely
as that in our experiments. Therefore, PatternListener is relatively
robust to the changes of drawing speed, especially with more at-
tempts.
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Figure 19: Spectrum of ambient noise.

4.2.5 Impact of Surrounding Objects. In this experiment, we in-
vestigate the influence of the surrounding objects that interference
with the acoustic signals on the accuracy of pattern cracking. We
perform this experiment with two participants, i.e., a participant
drawing patterns while another participant’s hand acting as the
surrounding object at different distances away from the phone. Fig-
ure 17 shows the success rate of one sample with three attempts
while the background hand is static or keeps moving at various
distances. In PatternListener, the cracking success rate is almost not
affected by the static objects because the Static Components Removal
can remove the noisy acoustic signals reflected the surrounding
static objects. We can observe that the surrounding moving objects
obviously affect the success rate, however, the effect decreases as
the distance increases. When the distance exceeds 60 cm, the in-
fluence of surrounding objects becomes negligible. This is because
the acoustic power decays as 2 times of the square of the distance
from the phone to the surrounding objects. This experimental result
demonstrates that it is not easy to disrupt PatternListener by using
surrounding objects.

4.2.6 Impact of Smartphone Models and Noise. We now evaluate
the impact of different smartphone models and ambient noise on
the cracking success rate. Figure 19 shows the energy distribution
of ambient noise in a cafe and an office during busy hours, respec-
tively. We can see that most energy of ambient noise resides in
low frequency (e.g., less than 5 KHz). Figure 18 demonstrates the
success rate with 1 sample for two different devices in an office and
in a cafe. We can see the success rate of HUAWEI P9 Plus is slightly
lower than that of SAMSUNG C9 Pro. This is because P9 Plus pos-
sesses a smaller screen (5.5 inches) than that of C9 (6 inches), and
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Consumption rate Consumption rate Average size of
of CPU of battery each sample
4% 2.8% 170.3KB

Table 1: The main factors related to stealthiness.

the same line of the pattern will be shorter on P9 Plus and thus
more difficult to be recognized. In addition, we can observe that
the ambient noise does not influence the performance of Pattern-
Listener obviously. It is because the generated acoustic signals are
in the range of 18 ∼ 20 kHz and ambient noise becomes negligible
with these frequencies.

4.2.7 Stealthiness. Finally, we evaluate the stealthiness of Pat-
ternListener to analyze the feasibility of the attack in practice. We
focus on the rate of CPU consumption, the rate of battery consump-
tion, the size of each audio segment.We collect the related data from
the volunteers’ phones when they use their smartphones as usual
in 20 days, and then calculate the corresponding values. The main
factors related to the stealthiness of malware are shown in Table 1.
We can see that PatternListener app only consumes extra 4% CPU
cycles during audio signal capturing and the average rate of battery
consumption is only 2.8%. The reason is that playing/recording the
sound incurs low energy cost. PatternListener only monitors the
unlocking action and captures the acoustic signals on the phone
while pre-processing and pattern reconstruction algorithms do not
run on the local phone. In addition, we observe that the average size
of each audio sample is only 170.3KB, which means the network
activity is also stealthy.

5 COUNTERMEASURES
PreventingUsage ofMicrophone inBackground.One straight-
forward countermeasure is to prevent the usage of microphone in
the background during pattern drawing, and then the system can
obstruct the access of microphone by any apps when a user is draw-
ing pattern. However, it may incur a usability issue since many
benign apps may still require using microphone even they are in the
background. For example, a user may want to wake up and launch
Google Assistant by saying “Hey Google" or “OK Google" [3]. Note
that, we do not notice any existing countermeasures that can effec-
tively prevent our attack although the risk of abusing microphone
has attracted more attention recently. In particular, in the newest
Android version (i.e., Android 9.0 [5]), the Android system prevents
an app from using the microphones if the UID of the app is in an
idle state. Unfortunately, it cannot effectively prevent the usage of
microphone by apps in the background if they can be always active
to use the microphone by running as an Android daemon, e.g., by
using JobScheduler [2]. Actually, we evaluate the effectiveness of
PatternListerner on a Pixel smartphone with Android 9.0 and find
that PatternListerner can still effectively compromise the pattern
lock.
Random Layout of Pattern Grids. Another sophisticated de-
fense is to randomize the layouts of the pattern grid. If the grid
is shown in a different position with different space between the
columns and rows each time during pattern drawing, the extracted
movement features corresponding to the same pattern are also
different. Thus, the attacker is not able to construct a valid ground-
truth database and the attack will fail. However, similar to apps

that enable random software keyboards, this countermeasure may
impact the user experience since users are required to find each dot
on a random layout of the pattern grid before pattern drawing.

6 RELATEDWORK
Pattern Lock Attacks: Smudge attack analyzes the oily residues
or smudges left on the screen to infer the unlock pattern [11].
However, this approach highly relies on the persistence of the oily
residues or smudges which can be easily disturbed by subsequent
on-screen activities after unlocking. Zhang et al. [35] showed that
it is possible to infer the pattern by leveraging the impacts of finger
motions on the wireless signals when drawing the pattern. While
their approach requires a complex setup and is very easy to be
disrupted by moving objects in the environment. Ye et al. [33]
cracked Android pattern lock using video footage that captures
the user’s fingertip motions as well as part of the device when
drawing the pattern. However, the accuracy suffers greatly from
filming angle and distance, changes of light, camera shake which
are always beyond control. Moreover, it relies on the assumption
that the drawing process can be monitored physically, which limits
the attack scale of the adversaries. Aviv et al. [12] demonstrated
that the accelerometer could be used to learn user gesture-based
and tap-based inputs so that they can infer PIN or unlock pattern.
However, the proposed approach can only achieve 73% accuracy of
inferring pattern and 43% accuracy of inferring PIN with only 50
PINs and 50 patterns.
Acoustic Attacks and Tracking: Keystroke recognition based
on the acoustic emanation has been studied in [8, 13, 19, 30, 38,
39]. These approaches leverage the observation that the sound of
keystrokes differs slightly from key to key or use time-difference
of arrival measurements to identify multiple strokes of the same
physical key. In particular, [19, 30, 38] employ the advances of
mobile devices to identify the keystroke of the nearby keyboard
and thus can leverage malicious apps to eavesdrop nearby keyboard
input. Arp et al. [7] explored the capabilities, the current prevalence
and technical limitations of embedded ultrasonic beacons in audio
and tracked users using the microphone of mobile devices. Trippel
et al. [27] investigated how analog acoustic injection attacks can
damage the digital integrity of the capacitive MEMS accelerometer.
To the best of our knowledge, PatternListener is the first work to
crack pattern locks using acoustic signals.

Recently, several schemes [22, 32, 34] have been proposed to
track 2D gestures by leveraging the smartphone’s microphone and
speaker. However, they cannot be applied to infer patterns in Pat-
ternListener since they require re-configuring smartphone systems
to enable 2D finger tracking. These schemes normally utilize the
smartphone as an active sonar to identify finger gestures, and the
proposed 2D gesture tracking needs to simultaneously use two
speaker-microphone pairs. To achieve this, they usually reconfig-
ure the smartphone system to eliminate the impact of the hardware
echo cancellation, which is not possible in our attack. Moreover,
the accuracy of gesture track is strictly limited by the region of
fingers close to the smartphone. For example, according to our
experiments, we find that the tracking error of LLAP [32] is only
0.4 cm when the fingers are in some optimal regions and move 5
cm, while it exceeds 1.6 cm when the fingers slide on the screen.
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In comparison with these schemes, PatternListener can accurately
extract the movement features and infer the unlock pattern even if
only one speaker-microphone pair is used during pattern drawing
on the screen.
Study of Android Pattern Lock: Uellenbeck et al. [29] studied
the security of Android pattern lock and they found that there
is a high bias in the pattern selection process. A pilot study on
user habits when setting a pattern lock and on their perceptions
regarding what constitutes a secure pattern was presented in [6].
Sun et al. [26] analyzed the characteristics of all valid patterns and
proposed a way to quantitatively evaluate their strengths. Aviv et
al. [9] showed that there is a high incidence of repeated patterns
and symmetric pairs for both 3 × 3 and 4 × 4 patterns. An effective
pattern lock strength meter was proposed in [25] to help users
choose stronger pattern locks on Android devices. Cho et al. [16]
proposed a system-guided pattern lock scheme that uses a small
number of randomly selected points while selecting a pattern to
improve the security of lock patterns.

7 CONCLUSION
We presented PatternListener, a novel attack that reconstructs the
unlock pattern by leveraging imperceptible acoustic signals. We
implemented a PatternListener prototype using off-the-shelf smart-
phones. We evaluated PatternListener using the smartphones with
130 different patterns and the experimental results demonstrated
that PatternListener achieved very high accuracy in reconstructing
the unlock pattern on smartphones with various practical consid-
erations. The experimental results showed that PatternListener is
able to successfully crack over 90% of the 130 patterns in five at-
tempts with only one sample for each pattern. Moreover, we can
also draw several important conclusions from the experimental
results: (1) complicated pattern with more lines does not always
mean stronger protection; (2) the attack is more efficient if the
device is held more stably; (3) PatternListener is relatively robust
to the changes of drawing speed and different sizes of screens; (4)
surrounding objects and noise interference from environment will
not significantly affect the effectiveness of the attack.
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APPENDIX
Permission of Accessing Microphone
In order to successfully construct the attack, PatternListener re-
quires the permissions to access the speaker, the microphone, and
the motion sensors as well as the network access permission. Most
permissions can be granted without user approval, except the per-
mission of accessing microphone. We investigate the permission of
accessing microphone in popular Android apps in the Google Play
marketplace. We analyze the top 100 apps of each app category clas-
sified by Google Play. Note that, if the number of apps in a category
is less than 100, we simply analyze all apps in the category. Figure
20 shows the fraction of apps requiring the permission of accessing
microphone in different categories. We observe that the permission
of accessing microphone is very popular in various Android apps.
In particular, the permission of accessing microphone is required
by 55% social apps and 52% communication apps. Thus, we can
conclude that it is easy for PatternListener to obtain the permission
upon installation after disguised as apps in these categories. To
evaluate the feasibility of PatternListener, we have submitted our
PatternListener app to Google Play and assigned the social category
to the app. The app passed the security check performed by Google
and was published on Google Play. Figure 21 shows the screenshot
of the Patternlistener app published on Google Play. To avoid being
downloaded by users mistakenly, we have withdrawn the app from
Google Play.
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Figure 20: The fraction of apps requiring the permission of
accessing microphone in different categories.

Figure 21: The publishing page of PatternListener onGoogle
Play.
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